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LElTER TO THE EDITOR 

Non-deterministic approach to anisotropic growth patterns with 
continuously tunable morphology: the fractal properties of 
some real snowflakes 

Johann Nittmannt and H Eugene Stanley$ 
t Dowell Schlumberger, 42003 St Etienne, France 
$ Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 
02215. USA 

Received 7 September 1987 

Abstract. We demonstrate that a tunable family of patterns resembling a range of experi- 
mentally observed snowflakes is obtained from a simple but somewhat ad hoc non- 
deterministic growth model-an extension of the Niemeyer-Pietronero- Wiesmann 7 model 
in which we ( i )  use ‘noise reduction’ to enable the asymptotic behaviour to become more 
readily apparent from simulations of reasonable size, ( i i )  replace the 7 model boundary 
conditions by the boundary conditions of the diff usion-limited aggregation ( DLA) model 
and ( i i i )  include a surface tension parameter. We measure the fractal dimension of some 
real snowflakes and obtain quantitative agreement with certain cases of the model. We 
conclude that the model, although somewhat ad hoc, gives patterns that are in both 
qualitative and quantitative agreement with a range of real snowflake patterns. 

What are the physical principles underlying the formation of snowflake patterns? This 
is the classic question of considerable current interest. There is no answer to even the 
simplest of questions that one can pose about snowflake growth, such as why the six 
arms are roughly identical in length and why the overall pattern of each arm resembles 
the five others. In particular, the question of precisely what sort of physical mechanism 
gives rise to the irregular growth of long thin side branches has attracted many authors 
interested more generally in pattern formation in the presence of anistropy [ 1,2]. 
Essentially all of these approaches have been deterministic in nature and the resulting 
patterns are perfectly symmetric! Thus these models have built into them-by deter- 
ministically requiring all six arms to be completely identical not only in length but in 
every other respect-the solution to the two puzzles: equal arm length and similar arm 
form. An experimental fact not widely known is that ‘regular snowflakes are the 
exception, not the rule’: no two branches of the same snowjake are exactly alike [3]. 

Is it possible that a different approach is called for, one based on the physics of 
random systems? Here we shall take a tentative step in this direction by exploring the 
consequences of an extremely simple random model which produces continuously 
tunable growth patterns that resemble a substantial fraction of experimental snowflake 
morphologies. Snowflake formation is thought to involve mainly the aggregation of 
water molecules and very tiny ice particles. Accordingly, we begin by recalling a family 
of models of the diffusion-limited aggregation ( DLA) type; generally, these represent 
the solution of the Laplace equation in an isotropic medium with a ‘sink’ (the growth 
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pattern) that is growing in time [4]. The Laplace equation describes the concentration 
of particles acted on by random forces and the DLA has been used to model a range 
of phenomena involving aggregating particles [4]. To the extent that snowflakes grow 
by accreting water molecules previously in the vapour or liquid phase, the growth rate 
is thought to be limited by the diffusion away from the growing snowflake of the latent 
heat released by these phase changes. Under conditions of small Peclet number, the 
diffusion equation describing the space and time dependence of the temperature field 
T ( r ,  t )  reduces to the Laplace equation [ 2 ] .  Thus a reasonable starting point is DLA, 
independent of whether we wish to focus on particle aggregation, heat diffusion, or 
both. DLA reflects well the randomness inherent in a wide range of growth processes, 
including colloidal aggregation, but it fails to describe dendritic solidification: while 
the deterministic models of snowflakes product. patterns that are much too ‘symmetric’, 
the DLA approach suffers from the opposite problem: DLA patterns are too ‘noisy’. 

The approach we propose here retains the attractive features of DLA and, at the 
same time, produces patterns that resemble real (random) snowflakes. Firstly, we 
introduce a controllable level of noise reduction [5-71: each perimeter site has a 
counter, which increments by one each time the perimeter site is chosen using the 
growth algorithm. The perimeter site becomes an actual cluster site only when the 
counter value reaches a threshold value s. It is believed [6 ,7]  that noise-reduced DLA 

(s> 1) is in the same universality class as ordinary DLA (s = l) ,  i.e. it has the same 
fractal dimension d,, the only difference being an increase in the characteristic local 
length scale W,t. However, one requires s random walkers for each new cluster site, 
so a more efficient method is called for. We therefore directly solve the Laplace 
equation for the growth probability p i  (the probability that the perimeter site i is the 
next to grow) using the same relaxation method used previously for the dielectric 
breakdown model ( DBM) [ 81, which differs from DLA in the boundary conditions$. We 
do not explicitly introduce anisotropy-the only anisotropy present is that arising from 
the underlying triangular lattice. 

Figure l ( a )  shows such a pattern for one value of the noise reduction parameter 
s = 200. We obtain the same general pattern for all values of s greater than about 
s = 100-the effect of increasing s seems to be that of increasing the width W, of the 
fingers and side branched. Note, however, that the fjords between the six main 
branches contain much empty space. Some snowflakes have such wide ‘bays’ but some 
do not. A better model would seem to require some tunable parameter that enables 
the complete range of snowflake morphologies to be generated. We have found one 
such parameter, 7, that has the desired effect of reducing the difference in the ratio 
of the growth probabilities between the tips and fjords. Specifically, we relate by the 
non-linear rule p , a ( V + ) ‘  the growth probability p ,  to the driving potential 4 (e.g. 4 
may be the temperature T ( r )  at a point r or the probability that a tiny ice particle is 
at point r ) .  Our model is the analogue for DLA of the non-linear 7 model [8]. It 

t For example, on a square lattice, a dendritic pattern was recently discovered by Meakin in ‘noisy’ DLA 

(s = 1) provided the mass is allowed to increase to roughly 4000 000 sites: we find a similar dendritic pattern 
in noise-reduced D L A  already for a mass of only 4000 sites! 
.t For DLA a walker need only step on any perimeter site i for i to become a cluster site, while for D B M  the 
random walker must actually sfep on the cluster in order that the last visited site becomes a cluster site. 
5 Our finding that dendritic structures are present for all s differs from [7], where a transition to needle-like 
structures was reported for a large value of s, s = 400. The difference arises from the fact that we generate 
patterns of up to 4000 sites while the clusters of [7] are ten times smaller (as a test, we fixed s = 400, varied 
the cluster mass between 100 and 4000 and observed an apparent crossover from needles to dendrites). 
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Figure 1. Typical growth patterns with 4000 particles and s =200. ( a )  7) = 1 ( d , =  1.5), ( h )  
7) -0.5 ( d , =  1.85), (c) 7) =0.05 ( d , = 2 )  and ( d )  7) = 1.50 ( d , -  1.4). The same values of d ,  
are found for the experimental patterns shown. 
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Figure 1. (continued). 

must be emphasised that our model is somewhat ad hoc in the sense that there is no 
way of justifying a non-linear growth law, nor can we justify the non-conservation 
obtained when we set V 2 4  = 0, instead of VIV4IV- 'V4  = 0. 

The strength of the non-linearity parameter r )  tunes the balance between tip growth 
and fjord growth and by varying r )  we found growth patterns (figures l ( h )  and (c ) )  
resembling a wide range of experimentally observed snowflake morphologies [ 3-41. 
Thus, while figure l (a)  resembles photo 3, p 182 of [3], figure l ( h )  resembles photo 
12, p 192 and figure l ( c )  resembles photo 12, p 31. We have also calculated patterns 
with r )  > 1 (e.g. the case r) = 1.5 is shown in figure l ( d ) ) .  Now the balance between 
tip and fjord growth is shifted in favour of tip growth. As a result, three of the arms 
grow so fast that they shield the other three. Experimentally, one also finds three-armed 
snowflakes (cf photo 10, p 197 [3]). 

We found that the effect of tuning a surface tension parameter U is to thicken the 
side branches, to round the sharper points of the pattern and to fill in the tiny holes 
that are present even for small values of r) ,  since the potential 4,F on the interface is 
not constant ( 4  = 4") but rather changes with the radius of curvature R,: 4,k = 
q50-u/R,. We increase the growth probability for site i in proportion to the number 
of cluster sites inside a small box centred about site i; since we expect R, to be of the 
order of a pixel length, we set I /R ,=  (4-NN)/3, where N N  denotes the number of 
occupied neighbours of the central cluster site. Of course, U is best normalised with 
respect to the gradient at time zero. 

To better understand the role of the tunable parameters U and r )  in determining 
pattern morphology, we have constructed a phase diagram with one parameter on each 
axis. We systematically constructed 200 patterns for 20 different values of 7) and IO 
different values of U. Each pattern resembles some experimental snowflake pattern, 
e.g. figure 2 (a )  resembles photo 4, p 150 of [4], figure 2(b) photo 10, p 94 and figure 
2(c) photo 7, p 145. 

Are real snowflakes fractal objects? This intriguing question has been the object 
of considerable discussion in recent years. Our growth patterns are fractal, except in 



Letter to the Editor L1189 

Figure 2. Typical growth patterns (also 4000 particles) with non-zero surface tension U. 
Again, s = 200. ( a )  7 = 1.0 and U = 0.1, ( b )  7 = 0.5 and U = 0.5 and (c) 7 = 0.1 and U = 0.2. 
The experimental patterns [3] are discussed in the text. 
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the limit 7 + 0. We found that the fractal dimension dr is independent of the value of 
the noise reduction parameter s (s seems to mainly renormalise the cluster mass), but 
df does depent on 7. We found that our values for dr agree remarkably well with 
values we obtain by digitising the corresponding photographs of experimentally 
observed snowflakes (figure 3). 

Before concluding, we make the following remarks. 
(i) We also found twelve-arm snowflakes (e.g. with u = 0.3 for the quarter of growth 

and  U = 0 for thL remainder). Such twelve-arm snowflakes are also commonly observed 
experimentally (cf [3], p 197, photos 2, 4, 6 and 7 ) .  This puzzle has been rationalised 
as arising from the perfectly symmetric ‘fusion’ of two six-arm snowflakes, but such 
an  improbable symmetric event need not occur in order to obtain twelve-arm flakes. 

9.0 
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1.0 ~~~ /=~ , ~ 7--- ~ 
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Figure 3. Typical log-log plot of the cluster mass M within a box of edge L as a function 
of L. Compared are the model and experimental pattern of figure l ( b ) .  The same slope, 
d ,  = 1.85 k0.06, i s  found for both. The experimental data extend to larger values of L, 
since the digitiser used to analyse the experimental photograph has 20 000 pixels while the 
cluster has only 4000 sites. 

(ii) Of course, no  element in nature has a perfectly linear response. When q is a 
positive integer (say k ) ,  a perimeter site grows only if it is chosen k times in succession 
( k  = 1 is pure DLA) [ 9 ] .  Moreover, the response of a network of many linear elements 
each with a random distribution of threshold values is non-linear. Specifically, Roux 
and Herrmann [lo] have recently found that if r’near elements with a distribution of 
threshold values E are combined in a network, then the response of the entire network 
is non-linear ! 

(iii) Many snowflakes possess relatively compact cores with ramified dressing on 
their surfaces, arising from different environments of assembly, and possibly also from 
melting and  structural rearrangement taking place after formation. We can mimic the 
effect of the changing environments in which a given snowflake is actually assembled 
by varying parameters such as q or  u during the course of the growth process of a given 
snowflake. We have generated many patterns similar to real snowflakes by allowing 
for values of 7 and u that change during the growth process, e.g. we might choose 
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7<< 1 for an  initial fraction f of the growth (thereby creating a hexagonal core) and  
77 = 1 thereafter (thereby creating a ramified exterior portion). 

(iv) No adequate explanation has yet been advanced for why, under certain 
conditions, a snowflake remains quasi-two-dimensional throughout its growth, despite 
the fact that the ‘assembly plant’ is three-dimensional. Our ideas on this subject stem 
from experience with critical phenomena and from recent theoretical and  experimental 
work on pattern formation, where it was found that even minute amounts of anisotropy 
are sufficient to stabilise structures of lower effective dimension [2, 11, 121. Of course, 
we introduce the anisotropy through a triangular lattice, while real snowflakes are 
made of molecules with an  anisotropic shape. However [ 111 showed clearly that the 
same experimental patterns are obtained regardless of whether anisotropy arises from 
the internal structure of the constituents, o r  is externally imposed through a scratched 
cell (as in [12]). 

(v) Diffusion of latent heat away from the growing aggregate is of paramount 
importance in dendritic growth of crystals from a liquid phase. An ideal model should 
encompass both the diffusion of heat away from the snowflake and the aggregation of 
particles toward the snowflake. Although both phenomena embody the physics of the 
Laplace equation, the timescales can be quite different. The two-timescale problem is 
an  object of current investigation. 

(vi) One obtains a DLA fractal even if the incoming random walkers have a sticking 
probability that is less than one. Hence we anticipate that DLA might describe structural 
rearrangement, and  this possibility is being studied. 

In summary, we have seen that a non-deterministic model produces growth patterns 
that resemble virtually the entire range of experimentally observed snowflake mor- 
phologies, from dendritic structures (7 = 1) to hexagonal plate structures (7 << 1). It 
is hoped that this modest work might stimulate further investigation of the basic physics 
of random systems needed for the understanding of anisotropic growth patterns. 

We wish to thank R Blumberg Selinger and P de  ‘Villard for generous comments, 
M Bourlion and G Daccord for assistance with measurements of dr for real snowflakes, 
D Green and  S Willy for computer assistance and the NSF and O N R  for financial support. 
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